Monday, November 5, 2007

Historical perspectives

Blood pressure was measured for the first time by Stephen Hales in 1773. Hales also described the importance of blood volume in blood pressure regulation. The contribution of peripheral arterioles in maintaining blood pressure, described as "tone," was first described by Lower in 1669 and subsequently by Sénac in 1783. The role of vasomotor nerves in the regulation of blood pressure was observed by such eminent investigators as Claude Bernard, Charles E. Edouard, Charles Brown-Séquard, and Augustus Waller. William Dayliss advanced this concept in a monograph published in 1923. Cannon and Rosenblueth developed the concept of humoral control of blood pressure and investigated pharmacologic effects of epinephrine. Three contributors who advanced the knowledge of humoral mechanisms of blood pressure control are T.R. Elliott, Sir Henry Dale, and Otto Loew.

Richard Bright, a physician who practiced in the first half of the 19th century, observed the changes of hypertension on the cardiovascular system in patients with chronic renal disease. George Johnson in 1868 postulated that the cause of left ventricular hypertrophy (LVH) in Bright disease was the presence of muscular hypertrophy in the smaller arteries throughout the body. Further clinical pathologic studies by Sir William Gull and H.G. Sutton (1872) led to further description of the cardiovascular changes of hypertension. Frederick Mahomed was one of the first physicians to systematically incorporate blood pressure measurement as a part of a clinical evaluation.

The recognition of primary, or essential, hypertension is credited to the work of Huchard, Vonbasch, and Albutt. Observations of Janeway and Walhard led to the recognition of target organ damage, which branded hypertension as the "silent killer." The concepts of renin, angiotensin, and aldosterone were advanced by several investigators in the late 19th and early 20th centuries. The names of Irwine, Page, van Slyke, Goldblatt, Laragh, and Tuttle prominently appear throughout the hypertension literature, and their work enhances our understanding of the biochemical basis of essential hypertension. Cushman and Ondetti developed an orally acting converting enzyme inhibitor from snake venom peptides and are credited with the successful synthesis of the modern antihypertensive captopril.

No comments: